Genome Sequencing: Using Models to Predict Who's Next

نویسنده

  • Michael Bunce
چکیده

0001 The recent discovery of a Hobbit-like hominid on the Indonesian island of Flores was startling in some respects—its rather modern existence, for one—but it represents a classic case of Darwinian evolution. For reasons that are not entirely clear, when animals make their way to isolated islands, they tend to evolve relatively quickly toward an outsized or pint-sized version of their mainland counterpart. Following this evolutionary script, the Flores woman, presumably a downsized version of Homo erectus, appears to have shared her island home with dwarf elephants and giant rats. Perhaps the most famous example of an island giant—and, sadly, of species extinction—is the dodo, once found on the Indian Ocean island of Mauritius. When the dodo’s ancestor (thought to be a migratory pigeon) settled on this island with abundant food, no competition from terrestrial mammals, and no predators, it could survive without fl ying, and thus was freed from the energetic and size constraints of fl ight. New Zealand also had avian giants, now extinct, including the fl ightless moa, an ostrich-like bird, and Haast’s eagle (Harpagornis moorei), which had a wingspan up to 3 meters. Though Haast’s eagle could fl y—and presumably used its wings to launch brutal attacks on the hapless moa—its body mass (10–14 kilograms) pushed the limits for self-propelled fl ight. As extreme evolutionary examples, these island birds can offer insights into the forces and events shaping evolutionary change. In a new study, Michael Bunce et al. compared ancient mitochondrial DNA extracted from Haast’s eagle bones with DNA sequences of 16 living eagle species to better characterize the evolutionary history of the extinct giant raptor. Their results suggest the extinct raptor underwent a rapid evolutionary transformation that belies its kinship to some of the world’s smallest eagle species. The authors characterized the rates of sequence evolution within mitochondrial DNA to establish the evolutionary relationships between the different eagle species. Their analysis places Haast’s eagle in the same evolutionary lineage as a group of small eagle species in the genus Hieraaetus. Surprisingly, the genetic distance separating the giant eagle and its more diminutive Hieraaetus cousins from their last common ancestor is relatively small. Without the fossils to directly determine divergence times, Bunce et al. relied on molecular dating techniques that use the rate of sequence evolution in the genes studied to establish the relative evolutionary ages of the eagles. Proposing a divergence date of roughly 0.7–1.8 million years ago, the authors acknowledge that while this is the “best available approximation of the ‘true’ date,” additional molecular data could help refi ne the estimate. Whatever the date of divergence, the extinct giant eagle is clearly an anomaly among the eagles studied here. The increase in body size—by at least an order of magnitude in less than 2 million years—is particularly remarkable, Bunce et al. argue, since it occurred in a species still capable of fl ight. The absence of mammalian competitors facilitated the evolution of much larger eagles and owls on Cuba and may have likewise precipitated the rapid morphological shift seen here. Haast’s eagle, the authors write, “represents an extreme example of how freedom from competition on island ecosystems can rapidly infl uence morphological adaptation and speciation.” Given its similarity to the smaller Hieraaetus species, the authors recommend reclassifying the New Zealand giant as Hieraaetus moorei. This study shows how quickly morphological changes can occur in vertebrate lineages within island ecosystems. Could it be that anthropologists might some day uncover evidence of a giant version of the Flores woman?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review

Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Next Generation Sequencing in Aquatic Models

The most valuable application of next generation sequencing (NGS) technology is genome sequencing. Genomes of several aquatic models had been sequenced in the past few years due to their importance in genomics, development biology, toxicology, pathology, and cancer research. NGS technology is greatly advanced in sequencing length and accuracy, which facilitate the sequencing process, but sequen...

متن کامل

Detection and Characterization of Weissellicin 110, a Bacteriocin Produced by Weissella cibaria

Background: Weissellicin 110 is the only bacteriocin reported in Weissella cibaria up to now. This bacteriocin represents several unique features. This is the first report on the gene sequence that encodes for the bacteriocin. Objectives: Providing a rapid detection method to isolate the weissellicin 110 encoding gene and determination of the bacteriocin distribution were the objectives. Materi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2005